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Abstraet--T~te theory of thermally driven convection of dry air in a porous medium is reviewed. The 
critical Rayleigh number for air is the same as for liquid, 4n 2, but the thermal gradient used is decreased 
by the adiabatic gradient of air. Because of the differences in the physical properties of air and water, 
initiation of convection requires the product of gradient and permeability to be thousands of times greater 
for air than for water. Finite amplitude analysis of the problem for Ra < 300 shows that: (1) the code 
predicts the onset of convection in an air filled porous medium; (2) at low thermal gradient, R a v s  Nu 
curves are nearly the same for air and water; (3) the slope of the R a v s  Nu curve matches well with 
experimental data reported by others for water; (4) time to steady state decreases approximately as the 

square root of Nusselt number. Copyright © 1996 Elsevier Science Ltd. 

IINTRODUCTION otH e gcpF p 2 
Raliquid ( la)  

The onset of  conve, ction in incompressible liquid in a 
porous medium has been considered many times, and 
a comprehensive treatment of  this subject can be 
found in Nield and Bejan [1]. Much less work has 
been done, however, on the problem of ideal gas con- 
vection in porous media. Strauss and Schubert [2] 
include the compressibility term in their linear stability 
analysis (LSA), but restrict their analysis to steam 
saturated water (i.e. no free vapor phase). Saatdjain 
[3] neglects the pressure/volume contribution to the 
energy equation irL his treatment of  ideal gas porous 
convection. Nield [4] corrects Saatdjain and provides 
many insights into the differences between air and 
water, but provides only a brief LSA. Zhang [5] pre- 
sents a complete LSA for moist gas convection in 
porous media that reduces to the solution of  Nield 
when moisture content  is zero. The reader is referred 
to this work for further details. 

Nield [4] and Zhang [5] both show that the onset 
of  convection in an ideal gas can be characterized by 
a critical Rayleigl:L number (Ra).  The exact form of  
the definition of  the Rayleigh numbers, however, is 
altered because of  the effects of  compressibility. To 
first order, the only difference is that for an incom- 
pressible fluid, like,, water, we have the Rayleigh num- 
ber 

whereas for air, we have a slightly different definition 
of  the Rayleigh number : 

Raa~r = H2 g g ( c p F - g ) p 2  (lb) 
TUx 

The two definitions of  the Rayleigh numbers are 
almost identical. For  an ideal gas, e = 1/T. The Cp 
term in Raliquia is replaced by ( c v F - g )  in the Ra,i r 
definition. This result is analogous to Jeffrey's [6] con- 
clusion that the Ra for compressible fluid convection 
(no porous medium) must be modified to account for 
the adiabatic gradient [4]. The change in the effective 
temperature gradient arises from the pressure depen- 
dence of  the heat content of  a fluid parcel. In an 
incompressible fluid, the internal energy depends only 
on the temperature. In a compressible gas, if a packet 
moves into a lower pressure region, it expands and 
cools, adiabatically reducing the effective temperature 
gradient. This means for air, F must be larger than an 
adiabatic gradient, g/c o ,~ 10 -2 K m -~, before the 
Rayleigh number even has a positive value. Below the 
adiabatic gradient, air convection is not  possible for 
any values of  system height (H) or  permeability (K). 
Thus if we use Raliq,ia, but substitute an effective tem- 
perature gradient 

t Also at the Los Alamos National Laboratory. 
Fort= F - g -  

Cp 
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NOMENCLATURE 

cp heat capacity of fluid at constant 
pressure 

g gravitational constant 
H thickness of system 
K permeability 
Nu Nusselt number 
P pressure of fluid 
Q heat content 
Ra Rayleigh number 
T temperature of gas and matrix 

(Kelvin) 
AT change in temperature across system 
t time 
U internal energy 
v Darcy fluid flux 
W work 
z downward unit vector. 

Greek symbols 
ct fluid thermal expansivity 
F AT/H, temperature gradient 
q5 porosity 
x equivalent thermal conductivity 
p viscosity of fluid 
p fluid density. 

Subscripts 
c critical 
eft effective 
m matrix 
s steady state. 

Superscript 
' total derivative with respect to time. 

for F and 1/T  for ct, the two Rayleigh numbers are 
identical [4]. 

It is the values of the physical quantities appearing 
on the two Rayleigh number definitions that dominate 
the difference between the convective stability of sub- 
surface water and air. Simple algebra shows that for 
a given geothermal gradient the critical permeability 
for onset of convection in a typical porous medium is 
three orders of magnitude greater for dry air than 
liquid water (Table 1). 

The dramatic increase in the permeability needed 
to initiate convection in air is explained by the factors 
noted previously. While the lower viscosity and higher 
thermal expansion coefficient favor convection in air, 
these are more than off-set by the p2 factor present in 
equations (la) and (lb). Convection occurs when it is 
more efficient to move energy by the physical exchange 
of matter than by conduction of heat. While it is easy 
to convect large volumes of air, those volumes of air 
carry little energy, and that heat is rapidly dissipated 
by the conduction through the matrix, damping the 
convective motion. 

The purpose of this paper is to examine convective 
flow in a porous medium filled with dry air heated 
from below. We present the theory, report finite 

Table 1. Physical Properties of Air and Water at 293 K and 
373 Kt 

Air Water 
293 K 373 K 293 K 373 K 

p 1.205 0.946 998.2 958.4 kgm 3 
ct 3x10 4 2.7x10-3 2.1×10-47.1×10_4 K_l 
x 2.5x10 2 3.2×10-2 0.6 0 .68  W m - I K  l 
cp 1006 1011 4182 4216 J kg -1K -l 
# 1.81×10-52.18x10-51.0x10 32.83x10-4Pas 

t Values from appendices C and D, Bejan [11]. 

amplitude results for Rayleigh numbers Ra up to 300, 
discuss the relationship between time to steady-state, 
Nusselt number (Nu) and Ra for these systems, and 
compare the results to those for similar systems satu- 
rated with liquid. 

The motivation for this work comes from our study 
of the effects of volcanic intrusions into partially satu- 
rated rock. We seek to understand the spatial and 
temporal scale over which an intrusive event can have 
a significant effect on the transport of gases, both from 
the intrusion itself (e.g. SO2) or at some distance from 
the intrusion. Firstly, we review the governing equa- 
tions and verify the ability of the numerical code we 
use for our finite amplitude calculations to reproduce 
the critical Rayleigh number. 

GOVERNING EQUATIONS 

The basic equations which govern low velocity 
(Darcy flow regime) convective flow in porous media 
are well developed in the literature (e.g. Nield and 
Bejan [1], Strauss and Schubert [2], and Nield [4]). In 
the following form, rewritten from refs. [1, 2, 4] for 
clarity, the equations apply to single phase com- 
pressible as well as Bousinesq approximate incom- 
pressible fluids. 

f f ~ P t + V ' p v = 0  (2a) 

K 
v = -- --(VP-- pgz) (2b) 

aT 
(pCp)m ~ -  + (PQ')r = KV 2 T (2c) 

where the matrix density, Pm, includes a correction for 
porosity. Equation (lc) can be reformatted in the 
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more traditional form of Nield [4]. By substitution of 
Q' = 13' - W', and bearing in mind the total derivative 
of a quantity (Q) irLcludes an advective transport con- 
tribution as : 

Q' t~Q + v- VQ. (2d) 

We arrive, after some algebraic manipulation and 
thermodynamic substitutions, at : 

(pCp)m ~3~T-f'Ot (pCp)fT'-ctTP" = xeffV2 T. (2e) 

The difference between the convection of an incom- 
pressible liquid and the convection of a compressible 
gas arises from three basic causes. The first is the 
significantly smaller amount of energy contained in a 
given volume of gas compared to the same volume of 
liquid. The advective heat transport term, pQ', of 
equation (2c) is directly proportional to the density, 
p. For  example, even though the rate of change per 
unit mass, Q', is roughly the same for both water and 
gas, the fact that the density of air is three orders of 
magnitude lower makes convection in air much less 
efficient. The second cause is the much smaller buoy- 
ancy force (pg, equation (2b)) for air, again due to 
the very large difference in the densities. For  air, 

~pg = pg --ff - - -  (3a) 

where the first term on the right hand side corresponds 
to the isothermal compressibility, ft. For the incom- 
pressible case, or~ly the thermal expansion term is 
retained as : 

~pg = pgctfT. (3b) 

The third is that the energy content of a given volume 
of air is pressure ,dependent whereas the energy con- 
tent of a given volume of liquid is not. For  air, 

oQ' = c p p T ' - P ' .  (4a) 

In contrast, for a Boussinesq liquid, 

pQ' = cppT'. (4b) 

Secondary factor,; that lead to real gases being more 
stable than an ideal gas include variations in ~t, cp and 
/~ with temperatu~Fe [4]. Comparison between air and 
water material properties and their derivatives with 
temperature can be located in Nield and Bejan [1] and 
also Bejan [7]. 

FINITE AMPLITUDE ANALYSIS 

In order to consider finite amplitude convection in 
air, one must go beyond the assumptions used in the 
linear stability analysis. This is especially important 
with air, since the strong temperature dependence of 
the thermodynamic properties of air leads to large 
differences in the Rayleigh number calculated at the 

hot versus cold ends of the convective cell. Note that 
in this paper, we will report all Ra values calculated 
at the mean temperature of the system after Davidson 
[8]. 

For the numerical analysis of the convection prob- 
lem we have used the finite element heat and mass 
transfer code FEHM [9a, b]. Originally developed for 
use in geothermal reservoir modeling, FEHM is 
capable of simulating multi-phase transport of air, 
water, water vapor, and dilute solutes in fractures and 
porous media. FEHM solves these equations for the 
highly nonlinear equations for air convection using 
the Galerkin technique to discretize the spatial deriva- 
tive, and a standard first order approach to the time 
discretization. Lobbato integration is used to evaluate 
integrals in the finite element equations and a modified 
Newton Raphson iterative procedure is used to solve 
the resulting system of equations. Dependence of 
material properties on pressure and temperature is 
represented as a cubic polynomial. The polynomial 
fits are based on National Bureau of Standards steam 
tables [10]. 

In our calculations, we assume that (1) flow is not 
affected by quadratic drag or boundary phenomenon 
(i.e. the creeping Darcy regime); (2) thermal equi- 
librium exists between the air and rock. The violation 
of either of these would require extra terms to modify 
the treatment of heat transfer. We address (1) first. 
The transition from creeping Darcy flow to inertial 
flow is determined by the value of the porous Reynolds 
number, Rep. If Rep << 1, all inertial and boundary 
effects are negligible. Even under the liberal assump- 
tion that our pore diameter is as large a s  10  _3 m, Rep 
approaches unity only if the air velocity is above 0.015 
m s-~. Maximum air velocities reached during this 
study were 2 × 10 -4 m s -I  at Ra = 300. With respect 
to issue (2), thermal equilibrium is reached if a tem- 
perature perturbation in the convective cell moves 
slowly compared to the time required to exchange 
energy over pore-scale lengths. Computations of 
energy transfer rates for FEHM (9a) show that ther- 
mal equilibrium is valid for water velocities below 
10 .5 m s-L Scaling the water results to air by the 
product of relative heat capacity, thermal conduc- 
tivity, and density (Table 1), we come to the con- 
clusion that a typical porous medium should be in 
approximate thermal eqttilibrium at air velocities 
below 1.7 x 10 -3 m s -~. 

A simple two dimensional regular grid representing 
a 200 m square, broken into 49 x49 rectangular 
elements, has been used for the simulations. The top 
and bottom boundaries have fixed temperatures while 
the side boundaries permit no flow with respect to 
either mass or energy (Fig. 1). Note that this choice 
of no flow lateral boundaries restricts the horizontal 
motion, and limits the possible planforms. For  all 
the simulations presented here we use an initial mid- 
domain temperature of 60°C. The top and bottom 
boundaries are set to 60°C+_ 1/2AT. For  each case, a 
non-flow calculation was used to generate the initial 
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Tto p = 60O-AT 200,200) 

o~T/0x = 0 T°=c°nductive i °~T/°~x = 0 

+ 
(o,o) 

Tbottom = 60°+AT 
Fig. 1. Domain, boundary and initial conditions for finite 

amplitude numerical simulations reported in this study. 

qr.,,,..,n o flow 
boundary 

temperature-pressure distributions as input for the 
stability test. Convection was set in motion by finite 
temperature perturbations (0.1-1°C) at selected bot- 
tom nodes. 

Our major measure of the dynamics of convection 
in these systems is the computed Nusselt number, Nu, 

which is the ratio of the total flux to the purely con- 
ductive flux implied by the temperature gradient. We 
calculate Nu at the top and the bottom of the system 
numerically after the system has reached steady state. 
The criterion for determining a steady state is that 
a small rate of change in the temperature has been 
achieved. As one can see in Fig. 2, this time is well- 
determined. Error in the calculation of  Nu is estimated 
to be between 2 and 3 %. 

FEHM RESULTS 

We begin by validating FEHM's ability to predict 
the onset of convection in air. As we show below, 
FEHM reproduces the critical Rayleigh number 
remarkably well (Fig. 3). We determined Rac by a 
straight line fit through the results for four cal- 
culations at low Rayleigh extrapolated to Nu = 1. 

Nonlinear effects decrease with temperature gradient, 
so we used a low thermal gradient of 20°C km n for 
this analysis. By definition at Rac the time to set up 

2 

z 

1 
30  4 ~ 2 / ~ 4 0  50  60  70  80  

Ra 
Fig. 3. Nu vs Ra for air from low Ra FEHM simulations. 

convection is infinitely long so we must extrapolate 
the finite amplitude results to estimate the threshold 
value. The Rao determined from these FEHM results 
is 39, remarkably close to the linear stability pre- 
diction of 4~ 2. 

Figure 4 shows all of our finite amplitude results 
for air and for water on a R a v s  Nu plot. As this 
figure shows, the results for air and water are nearly 
identical. See Table 1 for property values used in these 
simulations. The thermal gradient for these simu- 
lations was 20°C km -1 for air and 300°C km -~ for 
water. These results are in good agreement with a 
scaling analysis reported by Nield and Bejan [1] for 
systems saturated with water and experimental data 
reported by Kaneko et al. [11], Buretta and Berman 
[12] and Elder [13]. 

The relationship between Nu and time to steady 
state (t+) is shown in Fig. 5. As this figure shows, the 
time to establish the convective flow is on the order to 
1000 years for the system simulated here, and 
decreases as the strength of the convection increases. 
t+ scales in a simple way, decreasing in approximately 
direct proportion to the square root of Nu. This is 
true for a variety of thermal gradients and different 
system heights, scaled in Fig. 5 such that the product, 
(KHF), remains constant. Scaling to determine times 
needed to reach steady state has proved useful in our 
current work. Another point of interest is that as 

• ~ 1 10 "6 
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I I I I I "m  I 
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Time (years) 

Fig. 2. Rate of change of temperature at a point vs time. We 
defined steady-state as approximately the 95th percentile of 

these curves. 
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Fig. 4. Nu vs Ra for air and water from FEHM simulations. 
Filled circles represent results for air convection. Open circles 

represent results for water convection. 
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Fig. 5. Time to steady-state vs Nu for air from FEHM simu- 
lations for systems with several different thermal gradients 

and different heights. 

Nusselt number approaches one from above, time to 
steady state quickly exceeds the time for a conductive 
profile to equilibrate, in agreement with observations 
reported by Elder [13]. 

We use Nu rather than Ra to bypass the problems 
of  Raair varying so lgreatly in value from the top to the 
bot tom of the system. Instead of  using a mean value 
for the system temperature and plotting R a v s  ts after 
Davidson [8], we have chosen to examine time to 
steady state as a function of  the Nusselt number. The 
solution of  the LSA equations for stability of  integer 
wavelength cells predicts that multiple planforms are 
stable for a given Ra, each with a unique Nu [1]. Final 
planform pattern depends solely on initial conditions, 
thus a plot of  R a v s  ts would have several time points 
for a given Ra. The Nusselt number provides a single 
value for energy transport across a system at steady 
state and is therefore a more consistent parameter to 
plot vs time to steady state. 

C O N C L U S I O N S  

The equations governing convection of  air in a 
porous medium are very similar to those of  water. The 
compressibility of  the air, however, does affect the 
apparent temperature gradient. Because the air cools 
adiabatically wherL it rises, the effective temperature 
gradient is correspondingly reduced. By including this 
term it is possible to define a Rayleigh number appro- 
priate for the prediction of  the onset of  convection in 
air. The resulting critical Rayleigh number for air 
is the same as for water, 4n 2, when the gradient in 
incompressible R~Lyleigh number is lowered by the 
adiabatic gradient of  the gas. Even though the critical 
numbers are identical, it is much more difficult to 
induce convection in air than in water. In fact, the 
product  of  gradient and permeability must be thou- 
sands of  times larger because of  the very much lower 
density of  the ga:~, which makes convection in air 

much less efficient in transporting energy than in 
water. 

Finite amplitude analysis of  the problem using the 
F E H M  computer  code show that (1) the numerical 
code predicts the onset of  convection in air very well ; 
(2) the R a v s  Nu curves for air (at low thermal gradi- 
ents) and water are nearly identical ; (3) the slope of  
this R a v s  Nu curve matches well with theory and 
experimental data reported by others for water ;  (4) 
time to steady state decreases approximately as the 
square root  of  Nu. 
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